The Energy Balance Relation for Weak Solutions of the Density-dependent Navier-stokes Equations

نویسندگان

  • T. M. LESLIE
  • R. SHVYDKOY
چکیده

We consider the incompressible inhomogeneous Navier-Stokes equations with constant viscosity coefficient and density which is bounded and bounded away from zero. We show that the energy balance relation for this system holds for weak solutions if the velocity, density, and pressure belong to a range Besov spaces of smoothness 1/3. A density-dependent version of the classical Kármán-Howarth-Monin relation is derived.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Weak Solutions to Compressible Navier-Stokes Equations for Quantum Fluids

The global-in-time existence of weak solutions to the barotropic compressible quantum Navier-Stokes equations in a three-dimensional torus for large data is proved. The model consists of the mass conservation equation and a momentum balance equation, including a nonlinear thirdorder differential operator, with the quantum Bohm potential, and a density-dependent viscosity. The system has been de...

متن کامل

Some Recent Results on the Existence of Global-in-time Weak Solutions to the Navier-stokes Equations of a General Barotropic Fluid

This is a survey of some recent results on the existence of globally defined weak solutions to the Navier-Stokes equations of a viscous compressible fluid with a general barotropic pressure-density relation.

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

A convergent staggered scheme for the variable density incompressible Navier-Stokes equations

In this paper, we analyze a scheme for the time-dependent variable density Navier-Stokes equations. The algorithm is implicit in time, and the space approximation is based on a low-order staggered non-conforming finite element, the so-called Rannacher-Turek element. The convection term in the momentum balance equation is discretized by a finite volume technique, in such a way that a solution ob...

متن کامل

On the barotropic compressible Navier-Stokes equations

We consider barotropic compressible Navier-Stokes equations with density dependent viscosity coefficients that vanish on vacuum. We prove the stability of weak solutions in periodic domain Ω = T and in the whole space Ω = R , when N = 2 and N = 3. The pressure is given by p(ρ) = ρ and our result holds for any γ > 1. Note that our notion of weak solutions is not the usual one. In particular we r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016